将游戏中所有的可能性表示成一棵树,树的第N层就代表着游戏中的第N步。树的node数是随着树的深度成指数增长的,不考虑剪枝,每个node都是需要进行估值的。 Minimax tree在诸如象棋,黑白棋等传统游戏中取得了巨大的成功,主要原因还是有两个, 1、 游戏本身的探索空间相对较小,配合剪枝,开局和杀棋棋谱,非平衡树探索等优化技术,加上并行计算和Iterative Deepening,使得探索到树的深层甚至底层成为可能。 2、 搜素的最终目的就是找出对自己最有利的一步,而判断是不是有利自然需要一定的评判标准。一般我们用一个评价函数来作为标准。象棋等游戏的子有不同的强弱,并且有明确的目的性(诸如杀死对方的王),容易人工设计出或者通过机器学习得出一个良好的评价函数来正确评估一步落子所引发的后续局面。
考驾照网【KaoJiaZhao.COM】