雅可比式也称为雅可比行列式,它是以n个n元函数的偏导数为元素的行列式 。 事实上,在函数都连续可微,即偏导数都连续的前提之下,它就是函数组的微分形式下的系数矩阵的行列式。 若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微,这可用行列式的乘法法则和偏导数的连锁法则直行列式的乘法法则和偏导数的连锁法则直接验证。也类似于导数的连锁法则,偏导数的连锁法则也有类似的公式,常用于重积分的计算中。 如果在一个连通区域内雅可比行列式处处不为零,它就处处为正或者处处为负;如果雅可比行列式恒等于零,则函数组是函数相关的,其中至少有一个函数是其余函数的一个连续可微的函数。
考驾照网(KAOJIAZHAO.COM)