1、数据标注最基本的就是画框,比如检测目标是车,标注员就需要把一张图上的所有车都标出来,画框要完全卡住车的外接矩形,框得不准确机器就可能“学坏”。再比如人的姿态识别,就包括18个关键点,经过训练的标注员才能掌握这些关键点的标注,标注完成的数据也才能符合机器学习的标准。
2、无人零售、无人驾驶等都需要大量的人力,基于用工成本的问题,除了隐私数据之外,他们会把标注工作放在第三世界国家完成,马来西亚、泰国、印度等国家都有数据标注分公司。
3、常见的报道中,数据标注总被描述为“血汗工厂”,这项工作和从业者被描述得廉价低质,人被重复性机械式的劳动异化。在王金桥的解释下,这一刻板印象也被逐渐打破。
4、目前这种大量的人工标注是有价值的,因为理论上解决问题很难,但有了大量数据,设计深度学习网络,可以在特定场景特定应用中用数据训练神经网络,从而在很多场景中可以让AI快速落地占领市场、驱动行业应用、促进行业升级和迭代。
KaoJiaZhao.Com