初等矩阵的乘积不是初等矩阵,初等矩阵的乘积是可逆矩阵。即:矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
初等矩阵是指由单位矩阵经过一次初等变换得到的矩阵。初等矩阵的模样可以写一个3阶或者4阶的单位矩阵。首先:初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。例如,交换矩阵中某两行(列)的位置;用一个非零常数k乘以矩阵的某一行(列);将矩阵的某一行(列)乘以常数k后加到另一行(列)上去。若某初等矩阵左乘矩阵A,则初等矩阵会将原先施加到单位矩阵E上的变换,按照同种形式施加到矩阵A之上。或者说,想对矩阵A做变换,但是不是直接对矩阵A去做处理,而是通过一种间接方式去实现。
考驾照网【kaojiazhao.COM】