1、双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。在数学中,双曲线(多重双曲线或双曲线)是位于平面中的一种平滑曲线,由其几何特性或其解决方案组合的方程定义。双曲线有两片,称为连接的组件或分支,它们是彼此的镜像,类似于两个无限弓。双曲线是由平面和双锥相交形成的三种圆锥截面之一。(其他圆锥部分是抛物线和椭圆,圆是椭圆的特殊情况)如果平面与双锥的两半相交,但不通过锥体的顶点,则圆锥曲线是双曲线。
2、双曲线的几何性质分为两大类。
(1)位置关系:中心是两焦点,两顶点的中点:焦点在实轴上;实轴与虚轴垂直;双曲线有两条过中心的渐近线;准线与实轴垂直。
(2)数量关系:实轴长、虚轴长、焦距分别为2a,2b,2c。两准线之间距离为﹔焦准距(焦参数)。
3、双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。
KaoJiaZhao.Com