拉格朗日点又称平动点,在天体力学中是限制性三体问题的五个特解。一个小物体在两个大物体的引力作用下在空间中的一点,在该点处,小物体相对于两大物体基本保持静止。这些点的存在由瑞士数学家欧拉于1767年推算出前三个,法国数学家拉格朗日于1772年推导证明剩下两个。1906年首次发现运动于木星轨道上的国数学家拉格朗日于1772年推导证明剩下两个。1906年首次发现运动于木星轨道上的小行星在木星和太阳的作用下处于拉格朗日点上。在每个由两大天体构成的系统中,按推论有5个拉格朗日点,但只有两个是稳定的,即小物体在该点处即使受外界引力的摄扰,仍然有保持在原来位置处的倾向。每个稳定点同两大物体所在
考驾照网【KaoJiaZhao.COM】